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A% THT O PROBABILITY GENERATING FUNCTIONAL FOR POINT PROCESSES

D.J. Daley* D. Vere-Jones
Statistics Dept. (IAS) Institute of Statistics and
Australian National University Operations Research

Victoria University of Wellington

Summary

An extended probability generating functional (p;g.fl.)
f
Glh] = E(expj log h(x) N(dx)) 1is well-defined for any point
X
process N on the complete separable metric space X over

the space VO of measurable functions h : X - (0,1] such

that infx e X hi(x) = 0 . The distribution of N is
determined uniquely by the p.g.fl. G[h) = G[h] over the
smaller space UO of functions h € VO for which 1-h has
bounded support. Continuity results for G[.] involving
pointwise convergent sequences {hn} <V or VO or
‘measurable h : X » [0,1]} or V={(h €T : 1-h has

T

i

bounded support! are reviewed, and used in furnishing a
complete p.g.fl. proof of the mixing property of certain

stationary cluster processes.

mixing of point process, extended probability
generating functional.

Research supported in part by the Air Force Office of
Scientific Research Contract No. F49620 82 C 0009 at the
Center for Stochastic Processes, Department of Statistics,
University of North Carolina at Chapel Hill.
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1. Introduction

Various authors, in particular Moyal (1962) and Westcott
{1972), have developed the discussion of point processes via

probalility generating functionals (p.g.fl.s). The object

of this paper is to collect together some notes concerning

the spaces of functions on which p.g.fl.s may be defined,
introduce the extended p.g.fl., and use this extended p.g.fl. to
establish mixing properties of stationary cluster processes

via p.g.fl. techniques.

We work with point processes defined on some complete
separable metric space X . &X denotes the space of counting
measures defined on the Borel subsets Bx of X such that
these measures are finite on bounded sets in BX . This
set-up corresponds with that of Mathes, Kerstan and Mecke (1978);
Kallenberag (1975) assumes that X 1is locally compact as well.
In measure-theoretic language, a point process N 1is a
measurable mapping of a probability space (&,F,P) into
(&X'B(ﬁx)) where B(ﬁx) is the smallest o-algebra with
respect to which the mappings N->N(A) are measurable for

"/
cach A € BX . ' s”
N

The appropriate transform tool for the discussion of a

random measure ~ defined on X , as distinct from a random
-r
signed measure, is the Laplace functional L[f] defined on ;;;::r
the space BM+(X) of bounded measurable non-negative functions 1M !
3 .
f of bounded support (i.e., vanishes outside some bounded RS ‘
| —
set in BX) by - -
(1.1) L(f] = E exp(- { f(x)E(dx)) . l
X 1
!
{
1
\
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Kallenberg (1975, p.6) calls this functional the IL-transform,

denoting it by L. . He shows (his Theorem 3.1) that the
distribution of a random measure on a locally compact space
is determined by the values of L[f] for f in the smaller
space Fc - BM+(X) of non-negative continuous functions on \
with compact support. As a corollary, we deduce that a point
process, being a special case of a random measure, has its
distribution determined by the values of LI[f] for
f € BM+(X). (Strictly speaking, this is not a corollary unless
X 1s locally compact; rather we have a corollary to the extension
of Kallenberg's theorem to the case of X a complete separable
metric space.)

However, the most convenient transform tool for the
discussion of a point process N 1is not the Laplace functional,
but, by analogy with the probability generating function (p.g.f.)

for non-negative integer-valued random variables (r.v.s),

the probability generating functional (p.g.fl.) GI[.] .

Here it is not gquite so clear as to which space is the most
appropriate cne to use in the definition, and the main theme
of this note is that the choice of a slightly smaller space
than has been customary simplifies and clarifies the proofs of
some useful theorems on mixing properties and related topics.
We define the p.g.fl. first on the space U of measurable
complex-valued functions g on X of modulus - 1 and for

which 1-g has bounded support : set

(1.2) Glg] = E exp ; log g(x) N(dx)
X

with the convention that exp log g(x)}N{dx) = 0 1if
DX




N(:x/) ~ 0 for any x for which g(x) = 0 . 1In this
(first) definition of G[.] , the use of exponentiation,
coupled with exp(2ri) =1 and the fact that N(.) 1is atomic

with integer-valued atoms, overcomes any possible ambiguity

that could come from the use of different branches of 1log g(.)
for complex, non-zero, g(.) , while the possible indeterminacy
that could come from 1log g(x) when g(x) = 0 1is obviated

by the caveat. Since the very reason for the use of an integral
in (1.2) 1is to by~pass the gquestion of defining what may
possibly be an infinite product, the caveat resolves the possible
indeterminacy in a manner consistent with the purpose of the
definition.

The space i is certainly richer than needed. Ideally,
the choice of a function space used in defining transforms is
dictated by reasons of convenience and economy, the former
requiring the space to be large enough to admit closure under
(c.g.) limit operations, the latter requiring the space to be
small enough (consistent with uniqueness of determination
of the distribution of the random entity involved) so as to
allow the maximum flexibility in manipulation. Westcott (1972)
principally used for G[.] not U but the space V = V(X)
of [0,1]-valued measurable functions h for which 1-h
has bounded support. (In fact, Westcott used V to denote
the space of [0,1]~-valued measurable functions with bounded
support, so any measurable g : X - [0,1] has g € V iff
1-g = VvV . Thus, the distinction between V and V is
essnentially a notational convention, but we believe the use of

! to be preferable because it enables theorems to be stated

more cconomically.)

o e e o o
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The use of the space

it

(1.3) VO E VO(()

{h € V : inf o hi(x) ~ 0}
X €

has certain advantages, especially in the statement of
continuity results. Moreover, VO is the natural counterpart

of BM+(X) since

(1.4) - log h(.) €BM _(X) iff h(.) € VO .
It thus follows from the statement concerning Laplace functionals

that the distribution of a point process is determined by

{G[h] : h € VO},

2. The extended p.g.fl. and continuity properties

Neither VO nor V 1is closed under pointwise convergence.

Such closure is a property of the richer class of functions 1
VU - {measurable h : X - [0,1]}.
Moreover, given any h € VU , there exists a sequence of functions
{h_} CV such that
n 0

(2.1) h (x) + hix) (n ~ =),

because, for any monotone increasing seqguence of bounded sets
An with 1limit X , the relation

ho(x) =1 -1, (x(1-n"")(1-h(x)) (n=1,2,...)

n ]

yields such a sequence.

We shall also have use for

o




Now, given any h € T , the integral

( log h(x) N(dx)
!X
1s uniquely defined as a countable sum of non-positiv
¢ number, whether the resulting quantity is finite or i
Lot fhn? - VO satisfy (2.1) . Then the integrals

(2.2) | log h_(x) N(dx)
Jx n
are finite a.s., and the monotonicity of hn enables

apply the Lebesgue monotone convergence theorem to co

that as n-»®

(2.3) log hn(X) N(dx) -~ I log h(x) N(dx)

,l)( X
whether the limit is finite or infinite. Since the e
of each term in (2.3) is bounded by unity, an appe

the dominated convergence theorem shows that

- (
(2.4) G[hn] Z E(exp j log hn(x)N(dx))

X

+ E(exp J log h(x0O N(dx))
X

where the right~hand side is taken as the definition

the extended p.g.fl. G[h] over h eV .

(It is a simple exercise to verify that, if {hé}<ZV0

any other sequence that converges monotonically to h
pointwise as at (2.1), then G[h'] - Glh] as at (2
Glh] is well-defined via the construction involving
+ h)

The same argument can be applied to G[.] itself

3

whenever {hn; C T satisfies (2.1), and so leads to

e

nfinite.

us to

nclude

a.s.,

Xponential

al to

G[h]

of

is

.4), i.e.,

seqguences

part (ii)
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of the following compendium of continuity results concerning

G[.] .

THEOREM 2.1 Let N be any given point process and {hn)

a pointwise convergent seguence of functions hnE U with

limit h . The extended p.g.fl. G of N satisfies

(2.5) E[hn] + G(h] as n » «

whenever one of the following holds:

(i) N(X) < e a.s.
{(1ii) hn(x) + hi(x) (all x ) .
(iii) hn(x) + h(x) (all x) and {hn} cv .

(iv) |log(hn(x)/h(x)ﬂ < e(x) (all n) where the function

e(.) 1s measurable and satisfies

(2.6) f e(X)N(dx) < « a.s.
X

(v) For all sufficiently large n , hn(x) > ho(x)

(all x) for some hj € VO , and |hn(x) -h(x)|<e(x) (all x)

for some measurable function ¢€(.) satisfying (2.6).

Remark. This compendium could be extended, as in Westcott's
(1972) Theorem 2, by including conditions involving the first
moment measure M(.) = E N(.) , assuming the existence of

M(.) (i.e., finiteness of M(A) for bounded A € BX) .

Procf. When condition (i) holds, there exists, except possibly

---------

.......
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on a P-null set, a finite set of points xl(w),...,xN(x)(m)

such that
N({w) N(w)

T hn(xi(m)) - _R h(xi(w))
1 i=]

-

cxp( logh (x)N(dx) =
Jx n i

by the pointwise convergence of hn , i.e., (2.3) holds.
Then by dominated convergence, much as at (2.4), we must
have (2.5) .

We have already indicated the proof that (ii) implies
(2.5) . When (iii) holds, it follows that the integrals
at (2.3) are finite and the convergence is monotone, so,
again, (2.4) holds. (Indeed, under conditions (iii) ,

h < V also; 1if also hn € VO , then h € VO also.)

Introduce hg(x) = min(hn(x),h(x)). h;(x) = max(hn(x),h(y)),

so that when (iv) holds, 0 < logl(hp(x)/h’(x)) < elx) ,

and therefore, by dominated convergence,

(2.7) 0 - ( log(h"(x)/h'(x)) N(dx) =+ 0 a.s. (n » «)
< )y n n

Jonsequently we then have

-G[hn]-a[h]f==fE(epr loghn(x)N(dx)-exp[ log h(x)N(dx)) |
X

X

< ‘E{(exp: log h? (x)N(dx))

X

(1-exp( log[hﬁ(x)/h;(x)]N(GX))]l
X

)

< 1-E{epr [-log(h;(x)/h'(x))]N(dx)} - 0 (n—+ =)
X n

by dominated convergence with respect to expectation (i.e.,

the F-integration) using the pointwise convergence result

at (2.7).

.......
R T T o T,
L T T T T P

-~ v .
.......

L]
kel oD A K g

S e Y W N R S R

S e e T L T e e - .
LR LR - L P KRN .
atpt ™ W ‘: IS I S . ."‘.‘-.‘-_’-_.-_h.-_.. e T SR A SR .',-,~ et




P

When (v) holds, suppose without essential loss of
generality that for all n , hn(x) > hylx)  (all x ).

Then infx hn(x) > 1nfx ¢ X ho(x) = Yy say , with vy = 0 ,

e X
e and thus, with hg, h; as in the proof with (iv) holding,

) [log(hn(X)/h(x)H = llog[1 - (1 -hg(x)/h;(x))ll

(1 -hx"(x)/h;'l(x))jio(l M

A

v (L =k (x) /b (x))
. < Yhzlh(x)-hn(x)] < Yy 2e(x).

We can now mimic the proof as for part (iv).

The continuity at s = 1-0 of a p.g.f. ¢(s) = E sN
for an a.s, finite non-negative integer-valued r.v. N ,
implies the continuity for all 0 < s < 1 because, with
;)A 0 < Sy <1, ¢(sls)/¢(s) is again a p.g.f. The analogous

statement for point processes requires some care in formulating

the necessary qualifications.

THEOREM 2.2. Let {hn} C UV be a pointwise convergent
segquence with lim *whn(x) = 1 for eve Xx € X . Then

n lor every lnen
for a point process N with extended p.g.fl. GIl.] ,

(2.8) E[hn] > 1 as n-oo

if and only if for every h € VU ,

(2.9) a[hnm -~ G[h] as n-e ,
T Proof. In one direction the theorem is trivial,

-

__________

...........
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because  (2.9) reduces to (2.8) with hi(x) = 1 . For

the converse, we have merely to observe that

Glh] = EX, Glh h] = EXY , Glh ] = EY
n n n n

) for certain [0,1]l~valued r.v.s X, Yn' and thus
el -G 1 = - - = 1-G
C < G[h] G[hhn, E(X(1 Yn)) < E(1 Yn) 1 G[hn] .

showing that (2.8) implies (2.9).
Another p.g.fl. analogue of the continuity property of

v.g.f.s is the following result.

THEOREM 2.3 For h €7V, G[l-a(l-h)]~>1 as o + 0

;
if and only if | (l-h(x))N(dx) < « a.s.
|
1 X

'roof. For fixed o« in (0,1), since 0 < 1l-h(x) <1

(x < X), b

~(1-h) * log(l-a(l-h))> a(l-h) ¥ (a(1-h))¥
k=0

> = a(1-a) "1 (1-n) .

Thus, E expl(- (xj’(,l—h(x))N(dx)) > G[l-a(l-h)] {

X

> E exp(- a(l-a)-lj (1-h(x))N(dx)) . ‘
X |

by clementary properties of Laplace-Stieltjes transforms

cf [0,~]-valued r.v.s, it follows that the first and last

Lntm®

terms in these inequality relations converge as o + 0 to
f

Pro (1=h(x))N(dx) < =} |
'X

A S S m B Sl




3. Mixing of point processes

Stationarity of a point process N on X = md is the
requirément that the joint distributions of TXN(.) CN(.1x)
be independent of x , or, by extension, that P(TXU)z P(u)

for all x € ﬂfi and U € F ., A stationary point process

N(.) 1is said to be mixing when for any U, V € F ,

P(UNTYV) ~POIP(Y) as [ x|+«

Westcott (1972) showed in the case d =1 , and his proof
carries over unchanged to the case of general finite integer
d , that N(.) 1is mixing iff its p.g.fl. G[.] satisfies,

for all h,,h, € V ,

1772
> [
(3.1) Glh; T h,] G(h;1G[h,] as || x|
where for any function h: ﬁfi» R, Txh(u) = h (u+x) .

Recalling that P(.) 1is determined uniquely by {G[h]: h ¢ UO}

we have the following seemingly trivial modification of

Westcott's result.

THEOREM 3.1. A stationary point process N(.) on rY

is mixing iff its p.g.fl. satisfies (3.1) for all

hl,hz S VO .
We shall also be interested in the extended p.g.fl. version
of (3.1); this extension is not quite as trivial and is as

follows.

PROPOSITION 3.2. When a stationary point process is mixing,

its extended p.g.fl. G[.] satisfies

(3.2) G[thxhzl -> G[hI]G[hzl as || x]| » e

for all hl'h2 € v

’
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Proof. Start by showing that (3.2} holds for h1 S VO .
by using a monotone sequence of funct.o.s {hzn} C V0 with

h2n(x) #hz(x) as n-+« , Then

(3.3) G[ththn] = G[ththn]
- G[hI]G[h2n] = G[hI]G[h2n]
as | x|~ < , and write
ol e - Cc

\Glh,i(Clh,] - Glh, 1| + [G(h,]G[h, 1 - G(h T h, ]|

- —
+ {G[h T h, ] G[thth]I
‘in + 62n(x) + 63n(x) say .
A Y - I ,{
3n(x) = |E expjx log111(y)N(dy)[eprX log'Txh2n(y)N(dy)
- epr log T hz(y)N(dY)]|
x x
- !G[Tthn] - G(Txh2]I by monotonicity
= ‘E[hzn] - E[h2]§ by stationarity .

- 6 4 - -~ .

Clearly, in & !G[hzn] G[h2]| , so given € > 0 , we

can make both 61n < £ and 63n(x)< € , uniformly in x , by
choosing n sufficiently large. Fixing such n, (3.3) implies

that for |! x|| sufficiently large, §,,(x) <e also. Thus

(3.2) holds for h, € V_ , h2 € T . A similar argument
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proves it for h, € VT as well.

4. Mixing of cluster processes .

The cluster processes we consider have the structure

(4.1) N(.) = z N (.

xXx.€ N m
1 C

xi)

where Nc is the cluster centre process and the cluster

member processes Nm(.

.) are finite point processes coming
from an independent family in the sense that for any countable

collection of subscripting indices, Nm(.

xi) are mutually
independent a.s. finite point processes which are dependent
on Nc only through the locations Xy of the cluster centres.

If it is also assumed that

(4.2) N (. = Nm(.-inO)

d

and that Nc(.) is stationary, then it follows that the

cluster process N(.) 1is stationary. While there do exist
stationary cluster processes for which Nc(.) is non-stationary
and Nm(.l.) does not have the homogeneity property at (4.2),
the conditions enunciated around (4.2) do constitute a natural
prescription for what we shall always understand by the term

stationary cluster process. Writing

(4.3) G_[(h|x] = E expj logh(y)N_(dy|x) ,
m X m

it is known (see e.g. Westcott (1971) for references and details)

-]

that the p.g.fl. G[.] of N(.) is related to Gm[.

and the p.g.fl, Gc[.] of Nc(.) by

NSRRI |
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: A = !
i (4.4) G[h] Gc[Gm[h*']]
" {
g = E eprX (logGm[h[x][Nc(dx)
b,
. and that
(4.5) f (1-G_[h!x])N _(dx) < = a.s.,
"X m C
where h € V ., It is to be remarked that for such h
and Nm(.fx) , it is certainly the case that Gm[h{x]
need not be an element of V ., To that extent therefore,

the right-hand side of (4.4) should be written in terms of
the extended p.g.fl. Ec[.] . In other words, now that an
extended p.g.fl. is defined, we can replace the loosely

written statement (4.4) by

(4.4)° G[h] = Gc[Gm[hl-]] (h € V)

with (4.5) satisfied.
For a stationary cluster process the relation (4.2)

has as its p.g.fl. version
(4.6) G, lhlx] = Gm[TthO]

which, since the left-hand side equals TxGm[hIO] ,

can be written as

(4.6)" TxGm[h;u] = Gm[h[u+x] = Gm[Txh|u] .

LEMMA 4.1, When the family {Nm(.k):x € X} satisfies (4.2),

the p.g.fl. Gm[h!x] € VO when h € V) , and Gm[h]x] + 3

as x|~ = .
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Proof. Let h € V, have inf hix) = e " ~ 0
— x € X
for some non-negative finite © . Then, using (4.6),

G_[h|x] = E exp[ log h(y+x) N_(dy|0)

m X m

> E exp(-eNm(X!O)) > 0
because Nm(X\O) <o a,s.
For h€ V., , T h -+ 1 pointwise as || x|l » so the
0 X :

convergence to 1 of Gm[h]x] = GmlTxth] follows from

Nm(XIO) < ®» and part (i) of Theorem 2.1.

The theorem below is in Westcott (1971), though with
an incomplete proof. We were led to consider extended p.g.fl.s
and the classes V_, VO , and TV through formulating a p.g.fl.

proof of the result. An alternative proof is at 11.1.4 of

Matthes, Kerstan and Mecke (1978).

THEOREM 4.2. If the cluster centre process of a stationary

cluster process as above is mixing, then so is the cluster

process.

Proof. In view of Theorem 3.1, Proposition 3.2, and (4.4)°',

it is enough to show that for all hl,h2 € VO ’

(4.7) Glh;T h,] = Ec[c;m[hl'rxhzg.]]
> Gc[Gm[h1 .]]Gc[Gm[h2 .]]
as || x|| » » , it being known that the extended p.g.fl.

G{.] defined by Gc[.] satisfies (3.2) and that

Gm[hIx] € VO cV for hev, . Thus, for h_,h_. € Vo

0 3
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and D ST

- -~ C C ’
(4.8) G [G, (hy .07, G [hyl.1] = G_IG (hy[.11G (6 (h,].]]

15'

. = G[hl]G[h2] '
so, writing Xx(u) = Gm[hliu]TxGm[hzlu] ’
= | - )
Ax(u) Gm[thxh21u] x. (a)

X

it follows from (4.7) and (4.8) that it is enough to show

that as | x!| » = ,

(4.9) GC[XX + AX] - G[xx] - 0.

Appealing to the boundedness property noted in Lemma 4.1,

infX . X,u e X )x(u) = v say with v > 0 , and
infx : X,u e X(Lx(u)+xx(u)):>0 , S0, as a little manipulation
shows,

]GC[XX+LX] - GC[XX]I < 1-E exp{—fxlog(1+!Ax(u)IXx(u))Nc(duH

The function Ax(u) is of the form cov(X,Y) for r.v.s

X,Y with the property 0 <X <1, 0<Y<1l, EX-= Gm[hllu] '
EY = Gm[Txhzlu] -1 as || x]|+ « . For such r.v.s,

jcov(X,Y)| < 1 - max(EX,EY), so b (u) > 0 pointwise as

" x|] = « , and the relation le(u)! < 1-Gm[hllu] shows it

to be a.s. Nc—integrable uniformly in x . Now, using the

positive bound y on x (u) and |Ax(u)|5 1,

----------------

.......
........
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|—log(1-+|Ax|/xx)| = |log (1 -|Ax|/(|Axl + x|

bl T (T = ey s )

k=0

Thus we may apply part (iv) of Theorem 3.1 with
e(u) = Y_1(1+Y)(1-Gm[h1|u]) and IAx(u)I/xx(u) - 0 pointwise

as || x||+ » to conclude that, as || x||~» = ,

I8 Dty ] = Tolxy 1 € B 111 =G Ix,/ (x *+1a )] » 0 .

(4.9) is established, and the theorem is proved.
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